Still with Piping & Fabrication and once again we still discuss about welding type and system, and all those welding type will always very important for us, and we hope all of this will be useful to all us.
Root Pass Weldings. The integrity of any weld rests primarily with the quality of the root pass. In double-welded joints the root pass serves as a backing for passes welded from the first side. Before welding begins from the opposite side, the root area is usually removed to sound metal. In most cases, however, pipe welds must be made from one side only, and the inside surface of the root weld is not accessible for conditioning.
Backing Rings. The earliest solution to root pass welding was the use of a backing ring using the SMAW process. This usually assured good penetration and is still used for many applications. However, commercial rings used with nominal pipe dimensions may result in unwanted flow restriction, crevices for entrapment of corrosion products, and notch conditions which could result in cracking during service. Prior to the introduction of GTAW root welding, piping systems which required the highest possible quality were welded using counterboring of the pipe to close tolerances and machined backing rings. This reduced problems significantly, but the crack potential still remained. See PFI ES-132
Open Butt Root Welds. In petrochemical services backing rings often could not be used, and the practice of open butt welding with shielded metal arc electrodes was and still is used. Welders require considerably more skill. Welding is most often performed with E-XX10 electrodes, which are more controllable than the lowhydrogen types but are also more prone to porosity.
GTAW Root Welds. The introduction of GTAW represented a breakthrough in root pass welding. Because of the greater expense involved, its application is usually limited to applications requiring high-quality root welds. The weld end bevels are carefully prepared by machining and counterboring where necessary to meet the close tolerances required. The joint involves butted or open lands, and the weld is made with filler metal added or with a preplaced consumable insert. The latter have a decided advantage in that they eliminate a good deal of the variability introduced by hand feeding of filler wire. Consumable inserts come in a variety of shapes, each requiring somewhat differing fit-up tolerances. See PFI ES-21. Some types can be used for root pass welding in lighter wall materials (1⁄2 in and less) without the need for counterboring. Depending on the service, the inside surface of the molten weld puddle is often shielded from oxidation by an inert gas inside the pipe contained between dams. A small, controlled, positive pressure on the backing gas can aid in better controlling the shape of the root inside diameter.
When the root pass is made by the GTAW process, the resulting finished weld is relatively thin. In depositing the second and third passes, the first pass may be remelted. As it resolidifies, it shrinks radially, resulting in a small concave depression on the inside of the weld. This condition is usually considered acceptable provided the resulting thickness through the finished weld is equal to or greater than the required minimum wall, and the concavity blends smoothly into the adjacent base metal.
Root Pass Weldings. The integrity of any weld rests primarily with the quality of the root pass. In double-welded joints the root pass serves as a backing for passes welded from the first side. Before welding begins from the opposite side, the root area is usually removed to sound metal. In most cases, however, pipe welds must be made from one side only, and the inside surface of the root weld is not accessible for conditioning.
Backing Rings. The earliest solution to root pass welding was the use of a backing ring using the SMAW process. This usually assured good penetration and is still used for many applications. However, commercial rings used with nominal pipe dimensions may result in unwanted flow restriction, crevices for entrapment of corrosion products, and notch conditions which could result in cracking during service. Prior to the introduction of GTAW root welding, piping systems which required the highest possible quality were welded using counterboring of the pipe to close tolerances and machined backing rings. This reduced problems significantly, but the crack potential still remained. See PFI ES-132
Open Butt Root Welds. In petrochemical services backing rings often could not be used, and the practice of open butt welding with shielded metal arc electrodes was and still is used. Welders require considerably more skill. Welding is most often performed with E-XX10 electrodes, which are more controllable than the lowhydrogen types but are also more prone to porosity.
GTAW Root Welds. The introduction of GTAW represented a breakthrough in root pass welding. Because of the greater expense involved, its application is usually limited to applications requiring high-quality root welds. The weld end bevels are carefully prepared by machining and counterboring where necessary to meet the close tolerances required. The joint involves butted or open lands, and the weld is made with filler metal added or with a preplaced consumable insert. The latter have a decided advantage in that they eliminate a good deal of the variability introduced by hand feeding of filler wire. Consumable inserts come in a variety of shapes, each requiring somewhat differing fit-up tolerances. See PFI ES-21. Some types can be used for root pass welding in lighter wall materials (1⁄2 in and less) without the need for counterboring. Depending on the service, the inside surface of the molten weld puddle is often shielded from oxidation by an inert gas inside the pipe contained between dams. A small, controlled, positive pressure on the backing gas can aid in better controlling the shape of the root inside diameter.
Typical shop purging arrangement |
When the root pass is made by the GTAW process, the resulting finished weld is relatively thin. In depositing the second and third passes, the first pass may be remelted. As it resolidifies, it shrinks radially, resulting in a small concave depression on the inside of the weld. This condition is usually considered acceptable provided the resulting thickness through the finished weld is equal to or greater than the required minimum wall, and the concavity blends smoothly into the adjacent base metal.
GMAW Root Welds. Many fabricators and/or installers take advantage of the low penetrating power of GMAW in the short-circuiting mode to use it for openbutt root pass welding where the quality level of GTAW root pass welding is not required. The balance of the weld is made by other processes. Care must be taken to assure that unmelted wire does not penetrate the joint and remain.
No comments:
Post a Comment